АНАЛИЗ ДИСПЕРСИОННЫЙ (ANOVA)


АНАЛИЗ ДИСПЕРСИОННЫЙ (ANOVA)
- статистический метод, предназначенный для исследования причинной связи между переменной зависимой и одной или несколькими независимыми переменными (факторами). По числу независимых переменных, различают однофакторный А.Д., двухфакторный А.Д. и т.д. (не путать с Анализом факторным!) Зависимая переменная может быть только количественной, в то время как независимые переменные  могут быть представлены номинальными, порядковыми или количественными шкалами (последние должны быть дискретными или сгруппироваными в интервалы).

Первоначально А.Д. был разработан для обработки данных, полученных в ходе специально поставленных экспериментов , и считался единственным методом, корректно исследующим причинные связи. Однако в последние годы, вследствие общей либерализации взглядов на природу статистического анализа, он применяется также к данным, собранным в результате выборочных обследований, если численность выделяемых групп не слишком велика.

В основе метода лежит сравнение средних значений зависимой переменной для групп, образованных комбинациями факторов (сами значения факторов не рассматриваются). Это обстоятельство позволяет некоторым авторам рассматривать А.Д. как обобщение t-критерия Стьюдента, предназначенного для сравнения средних значений переменной в двух группах.

В А.Д. все различия в значениях зависимой переменной (y) объясняются двумя причинами: ее "собственной" или "естественной" изменчивостью, а также изменчивостью, вызванной влиянием независимых переменных, которые в данном случае называются факторами ( Дисперсия объясненная). Соответственно сумма квадратов   зависимой переменной SSобщая = (yij - y)2, где j - номер группы, к которой принадлежит объект с номером i, может быть разложена на две составляющие, одна из которых отражает собственную изменчивость y, а вторая - изменчивость, вызванную влиянием факторов:

SSобщая = SSвнутригрупповая SSмежгрупповая .

Модель однофакторного А.Д. предполагает, что среднее значение зависимой переменной y в группе с номером j (yj) зависит, во-первых, от среднего значения y по всей совокупности и, во-вторых, от эффекта j-го значения фактора xj, который обозначается альфаj : yj = y альфаj. Если фактор x не влияет на зависимую переменную y, то все альфаj = 0 и, следовательно, все yj = y, т.е. не отличаются друг от друга. Проверка гипотезы о влиянии фактора на зависимую переменную сводится к проверке нулевой гипотезы о том, что все альфаj равны нулю (H0 : альфаj = 0 для всех значений j), означающей также, что все групповые средние равны друг другу, против альтернативной гипотезы, состоящей в том, что хотя бы для некоторых значений фактора xj эффекты альфаj отличны от нуля (H1 : альфаj не равно 0 хотя бы для некоторых j). Принятие нулевой гипотезы означает признание независимости переменной y от фактора x; ее отклонение (и, соответственно, принятие альтернативной гипотезы) может служить подтверждением исследуемой причинной зависимости.

Результаты однофакторного А.Д. представляются в виде стандартной таблицы, известной как таблица А.Д. ( Таблицу 1 Приложения.)

Если H0 верна, то F-отношение имеет распределение Фишера с dfмгр = k - 1 и dfвнгр = n - k степенями свободы . Нулевая гипотеза должна быть отклонена, если вычисленное значение F превысит критическое значение F1-альфа, где альфа - заданный уровень значимости .

Многофакторный А.Д. концептуально не отличается от однофакторного. В двух- и многофакторных моделях проверяется ряд гипотез о влиянии на зависимую переменную каждого отдельно взятого фактора, а также их всевозможных сочетаний, что математически выражается в гипотезах о равенстве нулю прямых эффектов факторов и эффектов их взаимодействия. Для проверки таких гипотез межгрупповая сумма квадратов (SSмежгрупповая), представляющая вариацию зависимой переменной под общим влиянием всех факторов, делится на более мелкие составляющие, каждая из которых представляет прямой эффект одного из факторов или один из эффектов взаимодействия.

А.Д. не позволяет судить о том, как именно влияют факторы на значение зависимой переменной, т.е. в каких конкретно группах средние достоверно различаются. Для проверки конкретных гипотез о характере таких различий используются метод парных сравнений   и методы множественных сравнений .

О.В. Терещенко


Социология: Энциклопедия. — Минск: Интерпрессервис; Книжный Дом. . 2003.

Смотреть что такое "АНАЛИЗ ДИСПЕРСИОННЫЙ (ANOVA)" в других словарях:

  • Дисперсионный анализ — метод в математической статистике, направленный на поиск зависимостей в экспериментальных данных путём исследования значимости различий в средних значениях[1][2]. В литературе также встречается обозначение ANOVA (от англ. ANalysis Of… …   Википедия

  • ДИСПЕРСИОННЫЙ АНАЛИЗ (ANOVA) — Статистический метод для одновременного сравнения двух или более средних значений. ANOVA выдает ряд значений (F значения), которые могут быть статистически проверены с тем, чтобы определить, существует ли значимая связь между экспериментальными… …   Толковый словарь по психологии

  • ANOVA — См. дисперсионный анализ …   Толковый словарь по психологии

  • Корреляция — (Correlation) Корреляция это статистическая взаимосвязь двух или нескольких случайных величин Понятие корреляции, виды корреляции, коэффициент корреляции, корреляционный анализ, корреляция цен, корреляция валютных пар на Форекс Содержание… …   Энциклопедия инвестора

  • S (язык программирования)/Temp — Это временная версия статьи S (язык программирования). После внесения в неё правок нужно объединить эту статью со статьёй S (язык программирования) и заменить её содержимое шаблоном {{db}}. Если статья не подходит под формат Википедии, то её… …   Википедия

  • S (язык программирования) — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. У этого термина существуют и другие значения, см. S. S  язы …   Википедия